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Multi-body interactions can reveal higher-order dynamical effects
that are not captured by traditional two-body network models. In
this work, we derive and analyse two models for generalizing con-
sensus dynamics on hypergraphs, where nodes interact in groups
rather than in pairs. The first framework uses the Hodge Laplacian
of a simplicial complex to define linear dynamics on it. We find its
equilibrium points and relate them to its topology through the simpli-
cial homology. The second generalization, incorporates reinforcing
group effects, which defines non-linear dynamics in an hypergraph.
We show that unlike consensus dynamics, the mean field may shift
with time. However, some properties are preserved, as they have the
same equilibrium points and every orbit tends to one of them. With
numerical simulations we see that, despite the undirected nature of
this structure, the high-order interactions can create directional dy-
namics.
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Networks provide a powerful framework for modelling in-1

teracting systems, as they capture the essence of connec-2

tivity. Its strength comes from its minimalism and generality,3

only dealing with two node interactions. However, in recent4

years, the need for models where higher order interactions are5

allowed has been apparent (1). Areas where this structure is6

needed include collaboration of authors (2) and neural activity7

(3). The main mathematical objects used to study these inter-8

actions have been hypergraphs (4, 5) and the more restrictive,9

simplicial complexes (6, 7).10

One of the main areas of study within networks is their11

dynamics, where time-varying states are assigned to the nodes12

and evolve according to interaction rules defined between13

neighbouring. Sufficiently simple for theoretical investigations,14

the resulting dynamics may exhibit complex global behaviour,15

making them suitable to model various real-world systems16

(8). Despite the importance of this subfield, the study of how17

multi-body interactions in an hypergraph affect the spreading18

dynamics is still nascent, see (6, 9) for discrete dynamics and19

(10, 11) for continuous ones.20

The goal of this paper is to generalize the simplest dynamics21

defined on a graph, the consensus dynamics, to the context22

of hypergraphs. Our first proposal uses the Hodge Laplacian,23

which is the equivalent of the Laplacian matrix of a graph,24

when dealing with a simplicial complex. This has already been25

done in the context of discrete dynamics and random walks26

in (6), but to the best of our knowladge it has not been used27

to define continuous dynamics in a simplicial complex. Our28

main result for this model is the location of the equilibrium29

points and their relation with the homology of the simplicial30

complex.31

Our second generalization builds on (11), where dynamics32

in hypergraphs with exclusively 3 node interactions is proposed.33

This model is theoretically less appealing than the first one as34

it is not as directly related to consensus dynamics. However, it 35

is much easier to implement in practice since it is nodecentric, 36

like most real phenomenons. That is, state variables in this 37

model are exclusively in nodes, whereas in the first model we 38

have state variables for simplexes of all orders. 39

We first expand the work on (11) to be able to deal with 40

a generic hypergraph. The dynamics in this framework are 41

much harder to understand theoretically, as they are non- 42

linear. For instance, unlike consensus dynamics, the mean 43

field may shift with time. Despite this, we are able to show 44

that its equilibrium points coincide with the ones of consensus 45

dynamics, and that any orbit converges to an equilibrium point. 46

This result was not know even for the case with exclusively 47

3-way interactions. In the final section we perform some 48

numerical simulations for this model and we show how, even 49

with the undirectional structure of the hypergraph, the higher- 50

order interactions allow us to create directional like dynamics. 51

This had already been shown in (11) with 3-way interaction, 52

but when using higher-order ones, the set up for directional 53

dynamics can be simplified. 54

Basic definitions 55

An hypergraph H is given by a pair (V, E) where V is the set 56

of vertices or nodes, and E is a subset of the powerset P (V), 57

and its elements are called edges. In this paper we will always 58

assume that the set of nodes is finite. Given an edge e and a 59

node n of an hypergraph we will abusively denote e ∈ H and 60

n ∈ H. We say that an edge is a k-edge if it has cardinal k. A 61

graph is simply an hypergraph formed exclusively by 2-edges. 62

We say that two nodes of an hypergraph are adjacent if there 63

is an edge which contains both of them. With this notion 64

we can define connectivity and connected components in an 65

hypergraph as we do in graphs. A more extensive introduction 66

to this mathematical construction is given in (5). 67

Significance Statement

Networks dynamics provides useful models for many natural
and man-made phenomena, such epidemic spreading, elec-
tions and power grids. The main example of these is consen-
sus dynamics, which given an initial configuration, continuously
changes it until reaching an equality between the nodes. Re-
cently, it has been noted that network models, which are based
in two-body interactions, are not suited to model some phe-
nomenon where higher order interactions appear. Since then
there has been an increasing attention to hypergraphs, a gener-
alization of networks where multibody interactions are allowed.
We propose two dynamics on hypergraphs, that generalize the
consensus dynamics on a network.
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A special subclass of hypergraphs are called simplicial com-68

plexes, which are widely used in algebraic topology. These69

have the additional condition that any subset of an edge is70

also an edge. In this context we refer to edges as simplexes71

(although many authors use the term face), and k-simplexes72

correspond to (k+ 1)-edges. Although graphs are not formally73

simplicial complexes, as they lack 0-simplexes, we can always74

add these simplexes to the set of edges and form a simplicial75

complex which encodes the same information as the original76

graph.77

Simplicial complexes have been hugely influential in mathe-78

matics due to the existence of a boundary map on them, which79

enables the computation of their homology. We proceed to do80

a brief overview of this construction, a more detailed explana-81

tion is given in (12). Let S be a simplicial complex. We fix a82

ordering of its vertices (nodes) which induces an orientation83

on its simplexes. Then, we denote by Ck the R-vector space84

generated by the oriented k-simplexes of S. Then, there is a85

boundary map dk : Ck → Ck−1 (see (12) for definition) such86

that (C•, d•) is a chain complex. If we also consider the maps87

dT• we get,88

0 C0 C1 C2 · · ·
dT

1 dT
2

d1

dT
3

d2 d3
[1]89

Note that dT• can be thought of as the coboundary operator. As90

d• is a boundry operator it satisfies dk ◦ dk+1 = 0 and hence91

im dk+1 ⊂ ker dk. Thus, we can define the kth homology92

vector space as,93

Hk(S,R) = im dk+1/ ker dk.94

It is well known that these vector spaces encode many topo-95

logical information about S, see (12).96

Hodge Laplacian Dynamics97

Consensus dynamics on a graph G with N nodes is defined98

over the state space x ∈ RN , where each node has the scalar99

state xi, by the ODE,100

ẋ = −Lx,101

where L is the Laplacian of the graph G. Hence, if we can102

generalize the matrix L for simplicial complexes we will have103

an obvious generalization of concensus dynamics for them.104

To do so we will use the boundary maps introduced in the105

previous section.106

Let S be an oriented simplicial complex with N nodes.107

Using the maps in Eq. (1) we can define the Hodge k-Laplacian108

of S as,109

Lk = dTk dk + dk+1d
T
k+1.110

This is a generalization of the standard Laplacian of a graph,111

as it is well known that L = d1d
T
1 and that d0 = 0, so we get112

L0 = L.113

Now we define the Hodge Laplacian dynamics in ⊕Nk=0Ck114

as the set of decoupled ODE,115

ẋk = −Lkxk,116

where xk ∈ Ck. Note that the dynamics over x0 are exactly117

the consensus dynamics over the graph that the 0-simplexes118

and 1-simplexes create.119

The Hodge k-Laplacian is a symmetric matrix positively 120

semi-defined. Indeed, 121

LTk = (dTk dk)T + (dk+1d
T
k+1)T = dTk dk + dk+1d

T
k+1 = Lk, 122

and for all x ∈ RN , 123

xTLkx = xT dTk dkx+xT dk+1d
T
k+1x = ||dkx||2+||dTk+1x||2 > 0. 124

Thus, its dynamics are similar to the consensus ones. Any 125

initial condition yk ∈ Ck, can be expressed as the sum of 126

eigenvectors for the different eigenvalues of Lk. Then, as −Lk 127

is negative semi-definited, all the components corresponding to 128

non 0 eigenvalues will tend to 0 when t go to infinity. Using the 129

fact that Lk is symmetric, and hence it has orthogonal egien- 130

vectors for different eigenvalues, we get that, for all solution 131

xk(t), 132

lim
t→∞

xk(t) = pk(xk(0)), [2] 133

where pk : Ck → kerLk is the orthogonal projection to the 134

null space. For k = 0, we have that kerL0 is generated by 135

the indicator vectors of the connected components. If S is 136

connected we get kerL0 = 〈(1, . . . , 1)T 〉, and Eq. (2) reduces to 137

the well known fact that in consensus dynamics all components 138

of a solution tend to the average of the initial state components. 139

For general k, as shown in (13) we have, 140

kerLk = ker dk ∩ (im dk+1)⊥ ∼= Hk(S,R), 141

so the null space has a strong topological interpretation. For 142

instance, kerL1 is the space generated by the cycles which are 143

not the boundary of a combination of 2-simplexes. 144

Another interesting property of Hodge Laplacian Dynamics 145

is that they are the square of the obvious dynamics that one 146

may define from Eq. (1), in SI Section A we develop this 147

further. 148

Drawbacks of the model. An obvious limitation of this model 149

is that it can only be used with simplicial complexes, and some 150

hypergraphs from empirical data do not have this additional 151

structure. 152

However, the main obstacle when trying to use this model 153

is that often in empirical data, state variables can only be 154

measured in nodes. This poses challenges in both analysis 155

and interpretability, as our model give states variable to all 156

simplexes. 157

Group reinforcement model 158

In (11) it is studied a model to generalize consensus dynamics 159

for hypergraph formed exclusively of 3 edges. Following the 160

comments from the Discussion of the aforementioned paper 161

we can extend this construction for a generic hypergraph as 162

follows. 163

Given a hipergraphH with node states xi for i ∈ {1, . . . , N} 164

we define, 165

Hi = {A \ {i} : A ∈ H and i ∈ A}. 166

Then we define the following ODE, 167

ẋi =
∑
A∈Hi

∑
j∈A

s

(∣∣∣∣xj − ∑k∈A xk

|A|

∣∣∣∣) (xj − xi), [3] 168

where s is a arbitrary scalar non-negative function, which we 169

will always choose monotonic. Note that if H is a graph and 170

2 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX



s(0) = 1, we recover the consensus dynamics. We introduce the171

non-linear effect of s since we will show that if s is constant,172

then the dynamics above can be viewed as the consensus173

dynamics of a weighted graph in the nodes {1, . . . , N}. Hence,174

to observe a genuine effect of the high-order structures, which175

cannot be reduced to binary interactions, we need to introduce176

the non-linear factor s.177

We can see s(|xj − |A|−1∑
k∈A xk|) as modulating the178

intensity of the effect that the state xj has on xi. Note that if179

s is non-increasing, then the effect of xj on xi is reinforced if180

xj is close to the average state in A (for instance if all states in181

A coincide) and hindered if its far from the average in A. This182

property is reminiscent of non-linear voter models (14) where183

the voter changes his opinion with a probability that depends184

non-linearly on the fraction of disagreeing neighbours.185

Note that when A comes from an edge with 2 nodes, we186

have |A| = 1 and hence s(|xj−|A|−1∑
k∈A xk|) = s(0). If s is187

non-increasing, this is the maximal value it can take, and hence188

we are giving more imporatance to 2-way interactions than189

to other types of interactions. To avoid this, we may replace190

s in Eq. (3), for s|A|, where sk are different functions that191

model each order of interactions. By choosing this functions192

appropriately we can make certain order of interactions to193

have more importance. Then, our model can exhibit effects194

such as the ones predicted by Sznajd model (15), which claims:195

An isolated person does not convince others; a group of people196

sharing the same opinions influences the neighbours much197

more easily. For simplicity, in what follows we will restrict198

ourselves to the case when sl = s, but analogous study can be199

done for the general one.200

Theoretical results. First we show that the ODE given by201

Eq. (3) can be viewed as the consensus dynamics on a weighted202

graph, where the weights depend on the position. Indeed, given203

x ∈ RN we define the matrix,204

[W (x)]i,j =
∑

A: j∈A∈Hi

s

(∣∣∣∣xj − ∑k∈A xk

|A|

∣∣∣∣) ,205

where we note that W (x) is not symmetric and has null
diagonal entries. Then, reordering the sums in Eq. (3) we get,

ẋi =
∑
j 6=i

(xj − xi) [W (x)]i,j .

Now if we denote by L(x) the associate Laplacian of the206

weighted adjacency matrix W (x) we can reduce Eq. (3) to,207

ẋ = −L(x)x, [4]208

If s is constant, then L is constant, and the equation above209

shows that we are dealing with consensus dynamics on a210

weighted graph (this is essentially the same argument done211

in (11) for 3-edges). Hence, in this case we are not dealing212

with proper hypergraph dynamics. When s is not constant,213

W changes from point to point, thus it can not be studied as214

consensus dynamics. However, we can still use Eq. (4) to find215

its equilibrium points.216

Equilibrium points. Suppose for simplicity that H is connected217

and s is positive (similar results can be shown for the general218

case). Then, for all x, L(x) is the Laplacian matrix of a219

weighted strongly connected graph, and hence its null space is220

generated by (1, . . . , 1)T (see (16)). Thus, by Eq. (4), we have221

ẋ = 0 if and only if x ∈ 〈(1, . . . , 1)T 〉.222

Convergence. We now proceed to show that if H is connected 223

and s is positive, all orbits converge to an equilibrium point. 224

Let x(t) be a solution of the ODE given by Eq. (3), then if 225

xmax(t) is the maximal coordinate at t, all terms in Eq. (3) 226

are non-positive, and hence ẋmax(t) ≤ 0. The same argument 227

yields ẋmin(t) ≥ 0. Thus, we have a family of closed intervals 228

parametrisied by t ∈ R≥0, 229

It =
[
min
i
xi(t),max

i
xi(t)

]
, 230

such that It ⊃ Is if t ≤ s. Then, I = ∩t∈R≥0It, is not empty, 231

closed and connected, thus I = [a, b] for some a, b ∈ R. We 232

prove that a = b, which implies that x(t) converges to the 233

equilibrium point. Assume a < b, then 234

d

dt
(min

i
xi(t)) > (b− a)δ > 0, 235

where, 236

δ = max
x∈I0

s(|2x|), 237

which is bigger than 0 as s is positive. This is a contradiction 238

as it implies that mini xi(t) goes to infinity as t→∞, but it 239

also has to be in I. 240

Note that the argument above also shows that if all com- 241

ponents are in an interval of tolerance, then the convergent 242

point of the orbit will also be in this interval. 243

Mean field. An important property of consensus dynamics is 244

that the average state x is constant over orbits, i.e.
∑N

i=1 xi 245

is a first integral of the system. This is no longer true in this 246

context due to the non-linearity introduced by s, we have, 247

ẋ = 1
N

∑
B∈H
|B|≥3

∑
i,j∈B
i6=j

s

(∣∣∣∣∣xj −
∑

k∈B\{i} xk

|B| − 1|)

∣∣∣∣∣
)

(xj − xi). 248

Note that the effects from 2-edges do not appear in the ex- 249

pression above, as all of them have the modularity factor s(0) 250

and hence they cancel each other as happens with consensus 251

dynamics. Alternatively, we can use the expression of ẋi in 252

terms of the entries of W (x) to get, 253

ẋ = 1
N

N∑
i,j=1

(xj − xi) [W (x)]i,j . [5] 254

Trivially, if W (x) is symmetric, we get ẋ = 0. If we have 255

certain symmetries in the initial conditions and in the topology, 256

we will have thatW (x(t)) is symmetric for all times, and hence 257

x constant. We will see this happening in several numerical 258

simulations. 259

To finish this section we mention that it is easy to check 260

that the field defined by Eq. (3) has negative divergence at 261

every point. 262

Numerical simulations. We choose s(x) = e−λx as it is maybe 263

the simplest, positive, decreasing function. Moreover, it is 264

used in many nature and sociology models. We will always 265

choose λ = 1 if not stated otherwise. 266

To start with, we do simulations on the fully connected 267

hypergraph, i.e. E = P (V) , with 8 nodes. Starting with a 268

random initial condition (which we will always assume to be 269

chosen uniformly in the range [0, 1] for each coordinate) the 270
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Fig. 1. Coordinates of an orbit in group reinforcing dynamics for a complete hyper-
graph of 8 nodes, with λ = 1. The initial condition is chosen at random and the grey’s
intensity increases with the value of the initial condition of the coordinate.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Time

0.324

0.326

0.328

0.330

0.332

0.334

M
ea

n 
no

de
 st

at
e

Fig. 2. Mean field evolution of an orbit for a k-edge complete hypergraph of 8 nodes,
with λ = 1, and k = 2, . . . , 8. The initial condition is chosen at random but is fixed
between different k. We depict in dark red k = 2 and in light yellow k = 8 gradually
transitioning between this cases.

dynamics are shown in Figure 1. We see that x is not constant271

but it does not fluctuate much either. We also observe that272

every component converges to x so we verify our theroretical273

undersanding that orbits tend to equilibrium points. To see a274

substantial change in the mean field we take an initial condition275

with components in {0, 1}. Taking two null components we276

get Figure S1 where the change in x is much more significant.277

However, if we take half components 1 and half 0, we observe278

that x is constant. This can be explained by the effects of279

symmetry commented in Eq. (5).280

To understand better these dynamics we study separately281

the ones given by each order of edges, as we expect the general282

dynamics to be roughly the combination of this ones (which283

we have confirmed with simulations). For k ∈ {2, . . . , 8} we284

consider the complete graph of k-edges with 8 nodes and we285

study how the mean field changes its behaviour. In Figure286

2 it is shown for the random initial conditions from Figure287

1 and in Figure S2 it is shown for the initial conditions in288

Figure S1. In both plots it seems that when t = +∞, the289

deviation from the initial mean field grows with k. In fact,290

for binary interactions we see that the mean field is constant,291

which is what we expected as the system with only two order292

interactions is reduced to consensus dynamics. We can also293

see, that when the initial mean field is smaller than 0.5 then294

the mean field decreases for all orders, and that when the295

initial mean filed is bigger, it increases.296

The observations above hold for most initial conditions297

but not all of them. To see this given an initial condition,298

denote by x∞k the convergent point of the mean filed in the299
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Fig. 3. Histogram of the value l presented in the text for 500 random initial conditions.
We observe a much higher concentration in l = 6 than the one expected by random
chance (a proportion of 2 · 2−l = 2−5).
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Fig. 4. Histogram of the mean state of the initial condition for the cases in Figure 3
where l = 6. In blue the cases where the sequence of x∞k is increasing, and in red
the ones where is decreasing.

complete hypergraph of order k. Now we take 500 random 300

initial conditions and for each one of them find the largest l 301

such that, 302

x∞2 ≤ x∞3 ≤ · · · ≤ x∞l+2 or x∞2 ≥ x∞3 ≥ · · · ≥ x∞l+2, 303

and we obtain the histogram in Figure 3. By far the most 304

common occurrence is l = 6 which corresponds to the situation 305

depicted in Figure 2 where the values x∞k are monotonic. We 306

study further the cases with l = 6, in Figure 4 where we 307

depict the mean state of the initial condition for the cases x∞k 308

increasing, and decreasing separately. We confirm that there 309

is a tendency of having higher mean initial condition when 310

x∞k is increasing and a lower one when it is decreasing. 311

Directional effects. Although we are considering undirected hy- 312

pergraphs, the topology given by the higher order edges can 313

allow as to have directional like dynamics. To see this, we 314

consider two complete hypergraphs of 8 nodes, H1 and H2, 315

connected by a single edge which has all nodes of H1 an a 316

single one from H2. Note that this set up is simpler than the 317

one we would have if we only dealt with 3-way interactions, as 318

then we would need to choose two nodes from the source and 319

one from the target. We initialize all node states in H1 with 320

1 and in H2 with 0. The effect of this edge on the node in 321

H2 is greatly amplified as all other nodes in the edge have the 322

same state and hence the modulating factor is maximal s(0) 323

(s is decreasing). For nodes in H1 the modulating constant 324

is s(1/7) and hence much smaller, specially when λ is large. 325

Thus, we will see an unbalanced influence of this edge, which 326

will make the initial state of H1 to dominate the one in H2 327

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX
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Fig. 5. Coordinates of an orbit in group reinforcing dynamics for two complete
hypergraphsH1 andH2 of 8 nodes connected by a 9-edge with a single node in
H2. We take λ = 1 and the initial condition is chosen at random in the range [0.5, 1]
inH1 and in the range [0, 0.5] inH2. The intensity of the grey increases with the
value of the initial condition of the coordinate.

as show in Figure S3. The same principle holds if we pick an328

initial condition uniformly at random but with range [0.5, 1]329

for H1 and [0, 0.5] for H2 as displayed in Figure 5. The dy-330

namics depicted in it also reveal the modular structure of the331

hypergraph, first reaching consensus in each module and then332

reaching global consensus. Note that this is done in a clear333

separation of time scales exhibiting a slow-fast dynamics.334

An alternative model is to take the modules H1 and H2 as335

complete graphs, i.e. with only 2-edges. The main advantage336

of this module is that as in each module we have consensus337

dynamics, all changes in x are directly caused by the edge be-338

tween the modules. As a drawback, the strength of interaction339

in a module is weaker, and as shown in Figure S4 the node in340

H2 directly connected to H1 converges to x much faster than341

the rest of nodes in H2. Hence, the dynamics do not exhibit342

the modular structure as clearly as in the previous example.343

We now want to see how adding more connection between344

the complete graphs H1 and H2, changes the convergent point345

and rate of convergence of x. To do so we take 20 initial346

conditions uniformly at random in [0, 0.5] for H2 and take one347

minus this initial conditions for the initial conditions in H1.348

In doing this we make sure that the initial mean field is 0.5349

and that the situation in each module is equivalent, which350

makes it easier to appreciate the effects of the topology. For351

each of this conditions, we compute the convergent point of352

the mean field and the time it takes for all components to get353

with a certain tolerance to it (we take tolerance of 10−5).354

In Figure S5 we see the case when we add (N + 1)-edges355

from H1 and H2, i.e. with only one node in H2, until having356

all of them. We see that the convergent point of the mean357

field does not change significantly. However, the time it takes358

to converge dramatically decreases as the number of edges359

increases. This is what we expect as more edges accelerate360

the effect that H1 has on H2. In Figure 6 we start with361

the final configuration of the previous case, and start adding362

(N + 1)-edges from H2 to H1. In this case, both the distance363

from the initial mean field and the variability from initial364

conditions diminish as we add edges. This culminates in the365

last configuration when we have all (N + 1)-edges in both366

directions. In this case, x remains constant in time for any367

initial condition. This can be explained by the symmetry in368

the topology and initial conditions, as developed in Eq. (5).369

The time to converge also decreases as more edges are added.370

Finally, we study how the parameter λ effects the dynamics371

of the system. We take the complete graphs H1 and H2 with372
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Fig. 6. We do 20 experiments in the following setup and represent the convergent
point of the mean field in the left and the time for all coordinates to get within 10−5

of the mean in the right. Consider two complete graphs H1 and H2 of 8 nodes
connected by all 9-edge fromH1 toH2, with λ = 1 and initial condition chosen at
random as explained in the text. Then, add k = 0, . . . , 8; 9-edges fromH2 toH1
and consider the group reinforcement dynamics in this hypergraph.
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Fig. 7. Convergence point of the mean field, depending on the value λ for two
complete graphsH1 andH2 of 8 nodes connected by all 9-edge fromH1 toH2,
with initial condition 1 inH1 and 0 inH2.

all (N + 1)-edges from H1 to H2. We initialize nodes in H1 373

with 1 and nodes in H2 with 0 to maximize the directional 374

effect. In Figure 7 we can see the convergent point of the mean 375

field for different values of λ. Note that when λ < 0, then s 376

is an increasing function and hence the directional effects go 377

in the opposite direction. That is, the initial condition in H2 378

dominates the one in H1. Also for λ > 0, as λ increases, the 379

function s decreases faster, which makes the directional effect 380

stronger, as it is shown in Figure 7. 381

Conclusions and Discussion 382

Consensus dynamics is the basic model of network dynamics, 383

which have been key to model various real life scenarious 384

such as epidemics. Its simplicity allows it to be very well 385

understood theoretically. However, it is not flexible enough 386

to allow for more that 2 body interactions, which limits its 387

applicability. In this paper we propose two ways to generalise 388

this dynamics to hypergraph, Hodge Laplacian dynamics and 389

group reinforcement dynamics. These models allow for higher 390

order interactions, and hence can be used in a wider spectrum 391

of applications than the consensus model. 392

The Hodge Laplacian dynamics are based on the Hodge 393

Laplacian matrix, a generalization of the Laplacian matrix of a 394

graph to simplicial complexes. Its main advantage is that it is 395

a linear system defined by a semi-positive defined matrix, and 396

hence many of the consensus dynamics properties are preserved. 397

This makes it formally, the most natural generalization to 398

consensus dynamics. It also makes it computationally and 399
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theoretically easy to understand. For instance, we have been400

able to show that given an initial condition, an appropriate401

projection gives the limit point of this orbit. Moreover, the402

set of limit points can be interpreted as topological invariants403

of the simplicial complex. However, in this dynamics state404

variables are given to each simplex. This leads to challenges in405

analysis and interpretability of the model, as in empirical data406

states are usually exclusively defined on nodes. One possible407

solution to this limitation would be to introduce functions408

which from an initial condition only in nodes generate a state409

in all simplexes, and others that from a global state collapse it410

to a node state. One obvious candidate in the first direction411

would be the mean over nodes.412

The group reinforcement model, introduces a non-linear413

function (suppose now it is decreasing) to ponderate the stan-414

dard consensus dynamics. Given two nodes i, j in the same415

edge, this ponderation strengthens the effect of j to i if the416

state in j is similar to the mean state of the elements of417

the edge excluding i and weakens it otherwise. This was418

originally proposed in (11) for 3-way interactions. Here we419

have expanded their work to deal with a general hypergraph.420

Moreover, we have been able to show theoretically that this421

generalization has the same equilibrium points as consensus422

dynamics and that all orbits converge to one of them. We423

have also seen numerically how the topology and the initial424

conditions can influence the convergent point of the mean425

field. Additionally, we have shown how this topology may426

cause directional effects, even if the underlining structure is427

undirected.428

The main advantage of this model is that it only deals429

with nodes states and hence it can be easily implemented430

to model real life scenarios. However, the need to introduce431

non-linearity to observe non-reducible multi-body dynamical432

phenomena makes it difficult to study the system theoretically.433

For instance, we have observed that for this dynamics the434

mean field may not be constant, as is the case in the consensus435

framework. This non-linearity can also be used to model436

more complex situations, specially if we introduce different437

modulating functions s for each order. Studying which are438

reasonable functions to choose would be a good way to expand439

our work. On this note is important to point out that we have440

constrained our numerical simulations to the case s(x) = e−λx,441

but it would be interesting to study how other functions may442

change the dynamics. An interesting candidate would be443

the Heaviside function, which is 0 for smaller values than a444

threshold constant, and 1 otherwise, as it is not positive, which445

makes our theoretical understanding of its dynamics weaker.446
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Supporting information (SI)475

A. APPEND: Dynamics on simplical complex. Using the maps476

in Eq. (1) the most natural ODE to define on ⊕Nk=0Ck is,477

ẋk = dTk xk−1 + dk+1xk+1,478

We can encode this in a symmetric matrix D, such that we479

are considering the ODE, ẋ = Dx, where x = (x0, . . . ,xN ).480

Using the fact that dkdk+1 = 0 for all k it is easy to check481

that the Hodge Laplacian dynamics are given by482

ẋ = −D2x.483

As D is symmetric it is diagonalisable and hence the spectrum484

of D2 is just the squares of the spectrum of D. Despite this,485

these matrix may define quite different dynamics as D can486

have both positive and negative eigenvalues.487

B. Figures.488
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Fig. S1. Coordinates of an orbit in group reinforcing dynamics for a complete hy-
pergraph of 8 nodes, with λ = 1. The initial condition is x1, x2 = 0 and the rest
or coordinates at 1. The intensity of the grey increases with the value of the initial
condition of the coordinate.
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Fig. S2. Mean field evolution of an orbit for a k-edge complete hypergraph of 8 nodes,
with λ = 1, and k = 2, . . . , 8. The initial condition is chosen as x1, x2 = 0 and
the rest of coordinates at 1. We depict in dark red k = 2 and in light yellow k = 8
gradually transitioning between this cases.
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Fig. S3. Coordinates of an orbit in group reinforcing dynamics for two complete
hypergraphsH1 andH2 of 8 nodes connected by a 9-edge with a single node inH2.
We take λ = 1 and the initial condition is chosen as 1 inH1 and as 0 inH2. The
intensity of the grey increases with the value of the initial condition of the coordinate.
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Fig. S4. Coordinates of an orbit in group reinforcing dynamics for two complete
graphsH1 andH2 of 8 nodes connected by a 9-edge with a single node inH2. We
take λ = 1 and the initial condition is chosen at random in the range [0.5, 1] inH1
and in the range [0, 0.5] inH2. The intensity of the grey increases with the value of
the initial condition of that coordinate.
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Fig. S5. We do 20 experiments in the following setup and represent the convergent
point of the mean field in the left and the time for all coordinates to get within 10−5

of the mean in the right. Consider two complete graphs H1 and H2 of 8 nodes
connected by k = 1, . . . , 8; 9-edge fromH1 toH2, with λ = 1 and initial condition
chosen at random as explained in the text. Then, consider the group reinforcement
dynamics in this hypergraph.
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C. Main code. Here we attach the main functions used to do the numerical simulations. The full script of them can be found in489

the attached .ipynb field.490

1 def powerset (s):491

2 ’’’Takes a list s and gnerates powerset of s in list format . ’’’492

3 x = len(s)493

4 masks = [1 << i for i in range(x)]494

5 for i in range (1 << x):495

6 yield [ss for mask , ss in zip(masks , s) if i & mask]496

7497

8 def s(x): # Function s from the paper , that is used to define ODE498

9 return np.exp ( -1* abs(x))499

10500

11 def index_list (HGraph , nodes ):501

12 ’’’Given a hypergraph (nodes , HGraph ) it returns a list of all the index sets H_i explained in the paper . ’’’502

13 return [[[j for j in A if j != i] for A in HGraph if i in A] for i in nodes ]503

14504

15 def F(x,t,I_list ,s):505

16 ’’’Given a point x, a list of the indicator index of a hypergraph ( generated by index_list ) and a function s506

, returns the vector of the flow at x of the ODE defined in the paper . The variable t is not used but is507

needed to be able to use odeint lateron ’’’508

17 out =[0 for i in x]509

18 for i, A_list in enumerate ( I_list ):510

19 for A in A_list :511

20 y=[x[i] for i in A]512

21 Mean=np.mean(y)513

22 out[i]+= sum ([s(x[j]-Mean)*(x[j]-x[i]) for j in A])514

23 return out515

24516

25 def scale_color (a):517

26 ’’’Given a value a in [0 ,1] returns the value of the cm. Greys scaleted such that 0 goes to grey and not white518

. ’’’519

27 cmap = cm. Greys520

28 return cmap(a *0.6+0.399)521

29522

30 def ODE_plot (sol_ODE ,T=[]):523

31 ’’’Given a list of points , sol_ODE , represents the line graphs of each cordinate and the mean. If the524

parameter T is given , it uses it as the x_axes . ’’’525

32 if len(T)==0:526

33 x_axe =list( range (len( sol_ODE )))527

34 plt. xlabel ("Time steps ")528

35 else:529

36 x_axe =T530

37 plt. xlabel (’Time ’)531

38 y_axe =list(map (np.mean , sol_ODE ))532

39 ll=list(zip (* sol_ODE ))533

40 for i in ll:534

41 plt.plot(x_axe ,i, color = scale_color (i[0]))535

42 grey_line = mlines . Line2D ([] , [], color = scale_color (0.5) ,label ="Node state ")536

43 red_line ,= plt.plot(x_axe ,y_axe , color =’red ’,label ="Mean state ")537

44 red_line2 ,= plt.plot(x_axe ,[ y_axe [0] for i in x_axe ], color =’red ’,linestyle =’:’,label =" Initial mean")538

45 plt. ylabel (’Node state ’)539

46 plt. legend ( handles =[ grey_line ,red_line , red_line2 ])540

47 plt.show ()541

48542

49 def ODE_convergence (x0 ,I_list ,s,TOL =1E -10 , STEP =1):543

50 ’’’Given and initial condition x0 , a index list of a hypergraph I_list , and a function s; it computes the544

convergence point of the ODE at infinity and returns the mean of its components and the time speed to reach545

this point with a tolerance TOL and a STEP used to search for the convergence in intervals of this length .546

’’’547

51 x=x0548

52 T=np. linspace (0,STEP ,200)549

53 sol_ODE = odeint (F,x,T ,( I_list ,s))550

54 x= sol_ODE [ -1]551

55 while max(map(abs ,x-np.mean(x)))>TOL:552

56 T=np. linspace (T[-1],T[ -1]+ STEP ,200)553

57 sol_ODE = odeint (F,x,T ,( I_list ,s))554

58 x= sol_ODE [ -1]555

59 mean=np.mean(x)556

60 ll =[ max(map(abs ,i-np.mean(i))) for i in sol_ODE ]557

61 ll =[i>TOL for i in ll]558

62 index =ll. index ( False )559

63 return (mean ,T[ index ])560
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